The determinants of fourth order dissipative operators with transmission conditions
نویسندگان
چکیده
منابع مشابه
a class of fourth order differential operators with transmission conditions
we investigate a class of fourth-order differential operators with eigenparameter dependent boundary conditions and transmission conditions. a self-adjoint linear operator a is defined in a suitable hilbert space h such that the eigenvalues of such a problem coincide with those of a . we discuss asymptotic behavior of its eigenvalues and completeness of its eigenfunctions. finally, we obtain th...
متن کاملFunctional Model of Dissipative Fourth Order Differential Operators
In this paper, maximal dissipative fourth order operators with equal deficiency indices are investigated. We construct a self adjoint dilation of such operators. We also construct a functional model of the maximal dissipative operator which based on the method of Pavlov and define its characteristic function. We prove theorems on the completeness of the system of eigenvalues and eigenvectors of...
متن کاملInverse spectral problems for Sturm-Liouville operators with transmission conditions
Abstract: This paper deals with the boundary value problem involving the differential equation -y''+q(x)y=lambda y subject to the standard boundary conditions along with the following discontinuity conditions at a point y(a+0)=a1y(a-0), y'(a+0)=a2y'(a-0)+a3y(a-0). We develop the Hochestadt-Lieberman’s result for Sturm-Lio...
متن کاملNon–self–adjoint Fourth–order Dissipative Operators and the Completeness of Their Eigenfunctions
A class of non-self-adjoint fourth order differential operators with general separated boundary conditions in Weyl’s limit circle case is studied. The dissipation property of the considered operators in L2[a,b) is proven by analysis and by using the characteristic determinant, the completeness of the system of eigenfunctions and associated functions of these dissipative operators also be proven...
متن کاملFourth-order Operators on Manifolds with Boundary
Recent work in the literature has studied fourth-order elliptic operators on manifolds with boundary. This paper proves that, in the case of the squared Laplace operator, the boundary conditions which require that the eigenfunctions and their normal derivative should vanish at the boundary lead to self-adjointness of the boundary-value problem. On studying, for simplicity, the squared Laplace o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2014
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2013.08.004